Pannexin 1 channels: new actors in the regulation of catecholamine release from adrenal chromaffin cells

نویسندگان

  • Fanny Momboisse
  • María José Olivares
  • Ximena Báez-Matus
  • María José Guerra
  • Carolina Flores-Muñoz
  • Juan C. Sáez
  • Agustín D. Martínez
  • Ana M. Cárdenas
چکیده

Chromaffin cells of the adrenal gland medulla synthesize and store hormones and peptides, which are released into the blood circulation in response to stress. Among them, adrenaline is critical for the fight-or-flight response. This neurosecretory process is highly regulated and depends on cytosolic [Ca(2+)]. By forming channels at the plasma membrane, pannexin-1 (Panx1) is a protein involved in many physiological and pathological processes amplifying ATP release and/or Ca(2+) signals. Here, we show that Panx1 is expressed in the adrenal gland where it plays a role by regulating the release of catecholamines. In fact, inhibitors of Panx1 channels, such as carbenoxolone (Cbx) and probenecid, reduced the secretory activity induced with the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP, 50 μM) in whole adrenal glands. A similar inhibitory effect was observed in single chromaffin cells using Cbx or (10)Panx1 peptide, another Panx1 channel inhibitors. Given that the secretory response depends on cytosolic [Ca(2+)] and Panx1 channels are permeable to Ca(2+), we studied the possible implication of Panx1 channels in the Ca(2+) signaling occurring during the secretory process. In support of this possibility, Panx1 channel inhibitors significantly reduced the Ca(2+) signals evoked by DMPP in single chromaffin cells. However, the Ca(2+) signals induced by caffeine in the absence of extracellular Ca(2+) was not affected by Panx1 channel inhibitors, suggesting that this mechanism does not involve Ca(2+) release from the endoplasmic reticulum. Conversely, Panx1 inhibitors significantly blocked the DMPP-induce dye uptake, supporting the idea that Panx1 forms functional channels at the plasma membrane. These findings indicate that Panx1 channels participate in the control the Ca(2+) signal that triggers the secretory response of adrenal chromaffin cells. This mechanism could have physiological implications during the response to stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pituitary adenylate cyclase-activating peptide enhances electrical coupling in the mouse adrenal medulla.

Neuroendocrine adrenal medullary chromaffin cells receive synaptic excitation through the sympathetic splanchnic nerve to elicit catecholamine release into the circulation. Under basal sympathetic tone, splanchnic-released acetylcholine evokes chromaffin cells to fire action potentials, leading to synchronous phasic catecholamine release. Under elevated splanchnic firing, experienced under the ...

متن کامل

Calcium signaling and exocytosis in adrenal chromaffin cells.

At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels...

متن کامل

Evidence for paracrine signaling between macrophages and bovine adrenal chromaffin cell Ca(2+) channels.

The adrenal gland contains resident macrophages, some of which lie adjacent to the catecholamine producing chromaffin cells. Because macrophages release a variety of secretory products, it is possible that paracrine signaling between these two cell types exists. Of particular interest is the potential paracrine modulation of voltage-gated calcium channels (I(Ca)), which are the main calcium inf...

متن کامل

O2 sensing in chromaffin cells: new duties for T-type channels.

T-type Cav3 channels are voltage-gated Ca2+ channels that are able to sustain key physiological functions such as low-threshold spikes generation, neuronal and cardiac pacemaking, muscle contraction, hormone release, cell growth and differentiation. This mainly derives from the unique property of T-type channels that activate at rather negative voltages (∼ −60 mV). These channels are ubiquitous...

متن کامل

The relationship between arachidonic acid release and catecholamine secretion from cultured bovine adrenal chromaffin cells.

Increased arachidonic acid release occurred during activation of catecholamine secretion from cultured bovine adrenal medullary chromaffin cells. The nicotinic agonist 1,1-dimethyl-4- phenylpiperazinium (DMPP) caused an increased release of preincubated [3H]arachidonic acid over a time course which corresponded to the stimulation of catecholamine secretion. Like catecholamine secretion, the DMP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014